

out the copy Name: Teacher: Class: D Chemical Changes & Structure Section Title Completed Periodicity 1.1 Types of Chemical Bond 1.2a 1.2b Intermolecular Forces 1.3 Oxidising and Reducing Agents

		Higher Chemistry Self-Evaluation					Traffic Light				
B	JAB chem		Unit 1a Pe			on		Page	Red	Amber	Green
1		: Table, elements are	arranged in order	of increasing a		ber with e	♥ lements with	12	$\overline{\mathbf{i}}$		\odot
1	similar chemical properties in the same (vertical) group.								O	0	•
		nd physical properti		•	•						
		Ikali Metals in group						13	0	\odot	\odot
2a		alogens in Group 7 ar			vity decrea	ises down t	the group	22	$\overline{\mathbf{S}}$	\bigcirc	\odot
	 the Noble Gases in Group 0 are unreactive elements the Transition Metals are in the middle section of the Periodic Table between Groups 2&3. 										
-		ns on the Period Tab				erween Gr	oups 203.				
		nts in the same grou	- ·		alactrone			14		~	~
2b	0	. .	same number of ou			r chemical	properties	16	$\overline{\mbox{\ensuremath{\boxtimes}}}$	\bigcirc	\odot
	0		er electrons is the				• •	17			
	Horizontal row	s on the periodic tab				<u>.</u>	F*				
		nts are arranged in o	•		(number of	f protons)					
2		sing atomic number l				•		15	\odot	<u> </u>	<u> </u>
2c	across	s a period from left t	o right				5 5	18	$\overline{\mbox{\ensuremath{\otimes}}}$	\bigcirc	\odot
	 as the 	number of electron	s in outer shell incr	eases, the elem	nents move	from met	allic				
	charad	cteristics to non-met	al characteristics								
		lements in the Period									
			lent Molecular	Covalent Net		Monoto					
3	Li,		12, N2, O2	C (diamon	-	He		26	\odot	\odot	\odot
	Na, M	Ng, Al	F2, Cl2	C (graphit	te)	Ne	:				
	К,	Ca P4, S8,	C ₆₀ (fullerene)	B, Si		Ar					
	Changes in cov	alent radius across a	period and down a	group can be e	xplained in	terms of	changes in the	2			
	number of occupied shells and the nuclear charge.										
	 covalent radius/radii is a measure of the size of an atom. 										
	atoms increase in size <u>down a group</u>										
4	 down a group there is an additional shell of electrons 							27	$\overline{\mbox{\ensuremath{\mathfrak{S}}}}$	\odot	\odot
•	 additional shell of electrons : atoms increase in atomic size atoms decrease in size across a period 							28	Ŭ	Ŭ	Ŭ
			<u>oss a perioa</u> le same shell of ele	atrana ia haina	filled up						
	0	•	harge in the nucleu	-	•	owards nu	claus				
	0		towards nucleus ∴a				cieus				
-	Ionisation is th	ne process where ele									
		rst ionisation energy				of electron	s from one				
		of atoms in the gased	• • •								
	 the set 	cond and subsequent	ionisation energies	s refer to the e	energies re	quired to	remove				
5		er moles of electrons						29	$\overline{\mbox{\ensuremath{\otimes}}}$		\odot
5	1 st ionisatio	n Energy of sodium	2 nd ionisation ene	• ·		•	gy of boron	30	\odot	\square	\bigcirc
	Na(g) -	→ Na⁺(g) + e⁻	$\mathcal{C}^{+}(g) \rightarrow \mathcal{C}^{2}$	^{!+} (g) + e ⁻	B ²⁺ ((g) $\rightarrow B^{3+}$	(g) + e ⁻				
	• Each i	onisation energy is t	he removal of one r	nole of electror	ns.						
	0		h involves the remo				•				
			s to be added toget				red				
	-	sation energies can b	•	mic size and sci	reening eff	fect:					
	-	es to Ionisation Ener	• ·								
	0		down a group as the re further from the		on shell of o	electrons	each time.				
	0		re also shielded fro		ct of the n	uclour by	tha innan				
	0	electron shells	e uiso silleided 110			lucieus by	The mile	31			
6	0		easier to remove ∴	ionisation ener	rav decreas	ses.		32	\odot	\odot	\odot
		es to Ionisation Ener			57			-			
	0		trons is filled up a								
	0	outer electrons ar	re closer to the nuc	leus as they ar	e more atti	racted to	the increased				
		positive charge of									
	0	outer electrons ar	re more difficult to	remove∴the	e ionisation	energy ind	creases.				

7	 Atoms of different elements have different attractions for bonding electrons: electronegativity is the attraction an atom involved in a bond has for the electrons of the bond the higher the electronegativity value, the stronger the attraction of the atom for the shared electrons in a covalent bond electronegativity values increase across a period electronegativity values decrease down a group 	33 34	$\overline{\times}$		©
8	 Changes in electronegativity down a group and across a period can be explained using covalent radius, nuclear charge and screening effect due to inner shells of electrons. <u>Down a group</u> the atoms increase in size bonding electrons in outer shell are further away from the nucleus bonding electrons in outer shell are screened from the full effect of the nucleus by the inner shells of electrons This causes the electronegativity value to decreases. <u>Across a period</u> the atoms decrease in size bonding electrons are closer to the positive nucleus and are more strongly attracted to the nucleus this causes the electronegativity value to increase 	35 36	\odot	:	٢

			Lichan Ch	- miat	my Calf E	بيامي				Tro	iffic Li	ight
			•		ry Self-Ev s of Chemi				Page	Red	Amber	Green
9	A cov •	alent bond is a covalent bor the atoms ir	oair of shared ele ds are usually for	ectrons bet rmed betwe are held to	ween two atoms een non-metal atom gether as the two p	S		ir common	23 37	8		٢
10a		rent. Electrone <u>the polarity</u> <i>Small</i> or N in Electr Pure	gativity values car	n distinguis d depends Medi in Ele Po	tion of the atoms f th between pure cov on the difference i um Difference ctronegativity blar Covalent I-Cl, H2O, NH3	valent <u>n elec</u> i	& polar covalent	t bonds <u>thin the bond</u> ce vity 19	38	ŝ	:::	6
10ь	 Electronegativity values in the data book can be used to assign δ+ and δ- partial charges on atoms the atom with the higher electronegativity value will have a greater share of the bonding electrons this atom will have a δ- charge 								39 40	8		٢
11	•	Ionic bond Ionic comp	s are the electro ounds form latt	ostatic at ice struct	plest ratio of eac traction between ures of oppositel	posit y char	ive and negativ rged ions.	ve ions.	new	$\overline{\mbox{\scriptsize (s)}}$		\odot
12a	The t	Small or N in Electr ∴ Pure e.g. elements o low ionic	of a substance is o Difference onegativity covalent nd hydrocarbons character ent character	Medi in Ele ∴ Pe	velectronegativity um Difference ctronegativity blar Covalent I-Cl, H2O, NH3	i e h	ence of the eler Large Differen n Electronegativ ∴ Ionic Bondir .g. Na ⁺ Cl ⁻ , Mg ²⁺ (nigh ionic charac w covalent charac	ce vity 1g Cl ⁻)2 cter	41	8	::	0
12b	the e	lement with low			arge then the elect element with higher				new	8	٢	\odot
 12b the element with lower electronegativity to the element with higher electronegativity resulting in the formation of ions Compounds formed between metals and non-metals are often, but not always, ionic. Physical properties of a compound should be used to deduce the type of bonding and structure in the compound a) state at room temperature and melting & boiling point All ionic compounds have high melting points ∴ All ionic compounds are solid at room temp Covalent Networks have high melting points ∴ All covalent networks are solid at room temp Covalent Molecular can have low boiling pts ∴ All gases/liquid compounds are covalent molecular b) Solubility Ionic compounds and polar covalent substances are more likely to be soluble in water as they have charges inside the substance Non-polar substances are less likely to be soluble in a polar solvent like water but will dissolve ir non-polar solvents c) electrical conductivity, Type of Bonding Conduction as a Solid Conduction as a Liquid Conduction as a Solution metals on not dissolve in water (Meetals only) X X X X 							n 42 43	3		:		

	Bonds consisting of a hydro	ogen atom directly bonded to an atom of a strongly electronegative element				
	such as fluorine, oxygen or					
		re electrostatic forces of attraction between molecules that contain highly				
	polar -OH, -NH or					
	 Molecules with N, 	O or F directly bonded to H will have hydrogen bonding between molecules.				
22a						
		H	55	\odot	\odot	\odot
22b				Ŭ	0	Ŭ
	F1-	-1 V P1 $-N'$				
		Found in water, alcohols Found in				
		and carboxylic acids ammonia and amines				
	The type and strength of i	ntermolecular bonds affects melting point, boiling point and viscosity:				
	• The higher the me	elting & boiling point of a substance, the stronger the intermolecular forces				
	 Covalent compound 	ds with hydrogen bonding between molecules have higher melting points,				
	boiling points and	viscosity than those with only London dispersion forces				
	 Polar molecules wi 	ll have stronger intermolecular forces than non-polar molecules when				
	comparing molecul	es with similar numbers of electrons	57			
23	 the greater the nu 	umber of electrons the stronger the London dispersion forces between	58	0	\odot	\odot
24	molecules.			$\overline{\mbox{\scriptsize (s)}}$	\bigcirc	\odot
	Type of Van der Waals'	Hydrogen Bonding Permanent Dipole to London	59			
	Forces in Substance	Permanent Dipole Bonding Dispersion Forces				
	Strength of bonding					
	Melting Point					
	Boiling Point Higher Lower					
	Viscosity	Thicker				
	Hydrogen bonding has an e					
	Hydrogen bonding					
	miscible with wate	er. Both molecules are polar.			_	
25	 Hydrogen bonding 	increases the viscosity (thickness) of a substance. Hydrogen bonding brings	61	\odot	\bigcirc	\odot
		ogether and makes the substance thicker.				
		elevates the melting/boiling point of a substance due to brining the molecules				
	closer together.					
		nia, water and hydrogen fluoride are higher than expected given the number				
26	of electrons present in the		60	$\overline{\mbox{\scriptsize (i)}}$	\odot	\odot
		have hydrogen bonding between their molecules which raises boiling point			\cup	\smile
		ng points are described as anomalous as they are different from the norm.				
		ce to be less dense than water at low temperatures				
	•	re of ice due to hydrogen bonding between H2O molecules caused by molecules				
27	- .	her apart than in liquid water	62	\odot	\odot	\odot
	-	l2O molecules in solid ice takes up more space than in liquid water creased volume of H2O causes density to be lower (density = ^{mass} / _{volume})				
		ost substances as its solid floats in its liquid.				
		or non-polar) decides the type of substance which will dissolve in it:				
		lyne at Substance which discolves in Solvent				ı
1	Type of Solvent	Type of Substance which dissolves in Solvent	63		_	_
28	Type of Solvent Polar	Polar covalent compounds Ionic compounds	63 64	$\overline{\mbox{\ensuremath{\otimes}}}$		\odot
28	Type of Solvent Polar Non-polar	Polar covalent compoundsIonic compoundsNon-polar covalent substances	63 64	8	☺	0
28	Type of Solvent Polar Non-polar Polar substances are insolu	Polar covalent compounds Ionic compounds Non-polar covalent substances		8		0
28	Type of Solvent Polar Non-polar Polar substances are insolu Non-polar substances are i	Polar covalent compounds Ionic compounds Non-polar covalent substances Ionic compounds Ible in non-polar solvents Ionic compounds nsoluble in polar solvents e.g. water Ionic compounds		8		©
	Type of Solvent Polar Non-polar Polar substances are insolu Non-polar substances are i Solubility of a compound compo	Polar covalent compounds Ionic compounds Non-polar covalent substances	64			
28 29	Type of Solvent Polar Non-polar Polar substances are insolu Non-polar substances are i Solubility of a compound compo	Polar covalent compounds Ionic compounds Non-polar covalent substances Ionic compounds Ible in non-polar solvents Ionic compounds nsoluble in polar solvents e.g. water Ionic compounds		8	□□	() () ()

	Llichen Chemistry, Colf. Evolution			Traffic Lig		
8	Higher Chemistry Self-Evaluation Chem Unit 1.3 Oxidising and Reducing Agents	Page	Red	Amber	Green	
30	Reduction is a gain of electrons by a reactant in any reaction.					
	Oxidation is a loss of electrons by a reactant in any reaction.		$\overline{\mathbf{S}}$	\bigcirc	\odot	
32	In a redox reaction, reduction and oxidation take place at the same time.		_		_	
	An oxidising agent is a substance which accepts electrons					
	 oxidising agent oxidises something else 					
33	 oxidising agent itself is reduced and accepts/gains electrons 	36a	$\overline{\mathbf{S}}$	\odot	\odot	
35a	• oxidising agents tend to become more negative	37a	\cup	\bigcirc	J	
	e.g. acidified permanganate solution is an example of an oxidising agent which gains electrons					
	$MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$					
	A reducing agent is a substance which donates electrons					
34	 reducing agent reduces something else agent itself is oxidised and loses electrons 	274	_	_		
34 35b	 reducing agents tend to become more positive 	36b 37b	\odot	\odot	\odot	
	e.g. sulphite ions are an example of a reducing agent which loses electrons	0/0				
	$SO_3^{2^-} + H_2O \longrightarrow SO_4^{2^-} + 2H^+ + 2e^-$					
	Electronegativity can be used to predict which elements lose or gain electrons when they form ions:					
	 metals have low electronegativity values and tend to lose electrons to become positive ions 					
	 metals act as reducing agents as the lose electrons 					
	Element Metal/Non-metal Electronegativity Value Equation					
36	PotassiumMetal 0.8 K \rightarrow K ⁺ + e ⁻	38 39		_	-	
30 37	LithiumMetal1.0Li \rightarrow Li* + e ⁻		$\overline{\otimes}$	\odot	\odot	
07	 non-metals have high electronegativities and tend to gain electrons to become negative ions 					
	\circ non-metals act as oxidising agents as they gain electrons					
	Element Metal/Non-metal Electronegativity Value Equation					
	ChlorineNon-metal 3.0 $Cl + e^- \rightarrow Cl^-$ FluorineNon-metal 4.0 $F + e^- \rightarrow F^-$					
	Group 1 elements are the strongest reducing agents					
	 The strongest oxidising agents are at the bottom of the left-hand column of the 					
	electrochemical series.					
38	Halogens: fluorine, chlorine, bromine, iodine	10	\odot	\odot	\odot	
42	Group 7 elements are the strongest oxidising agents	40	\odot	\bigcirc	\bigcirc	
43	• The strongest reducing agents are at the top of the right-hand column of the electrochemical					
	series.					
	Alkali metals: lithium, sodium, potassium, rubidium, caesium and francium					
	Hydrogen Peroxide reacts by the following equation:			_	~	
39a	H_2O_2 + $2H^+$ + $2e^- \rightarrow 2H_2O$	44	\odot	\bigcirc	\odot	
	 Acidified peroxide is an oxidising agent as it accepts electrons and is reduced itself 					
	Acidified dichromate solution reacts by the following equation:					
	$Cr_2O_7^{2-}$ + 14H ⁺ + 6e ⁻ \rightarrow 2Cr ³⁺ + 7H ₂ O					
39b	 Acidified dichromate is an oxidising agent as it accepts electrons and is reduced itself 	43	$\overline{\mathbf{S}}$	\odot	\odot	
390	Acidified permanganate solution reacts by the following equation:		\bigcirc	Θ	\bigcirc	
	MnO_4^- + $8H^+$ + $5e^- \rightarrow Mn^{2+}$ + $4H_2O$					
	• Acidified dichromate is an oxidising agent as it accepts electrons and is reduced itself					
	Carbon Monoxide reacts by the following equation:					
39c	$CO + H_2O \rightarrow CO_2 + 2H^+ + 2e^-$	44	$\overline{\mathbf{S}}$	\bigcirc	\odot	
	• Carbon monoxide is a reducing agent as it loses electrons and is oxidised itself					
	Oxidising agents can be used as a chemical to		_			
		45	$\overline{\mathbf{S}}$	\odot	\odot	
40	 Bleach clothes or hair as oxidising agents breaks down coloured compounds 	73	\odot	\sim		
40	Kill fungi and bacteria and inactive viruses	-13	\cup)		
40		13	8) ()	\odot	

44	Given reactant and product species, ion-electron equations which include $H^*(aq)$ and $H_2O(l)$ can be written. 1. Write down the main species involved in the reaction $IO_3^- \rightarrow I_2$ 2. Balance all atoms except O and H $2IO_3^- \rightarrow I_2$ 3. Add H ₂ O to other side to balance O atoms $2IO_3^- \rightarrow I_2 + 6H_2O$ 4. Add H ⁺ ions to other side to balance H atoms $2IO_3^- + 12H^+ \rightarrow I_2 + 6H_2O$ 5. Add e ⁻ to most positive side to balance charge $2IO_3^- + 12H^+ + 10e^- \rightarrow I_2 + 6H_2O$	46	8	٢
45	Ion-electron equations can be combined to produce redox equations Reduction: $I_2 + 2e^- \rightarrow 2I^-$ Oxidation: $2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2e^-$ Redox: $I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^-$ Where the electrons do not cancel out, ion-electron equations may have to be multiplied: $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $add and MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $add and MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $Fe^{2+} \rightarrow 5Fe^{3+} + 5e^-$ $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ $Fe^{2+} \rightarrow 5Fe^{3+} + 5e^-$	47	Ø	٢